Hybrid Organic Inorganic Perovskites

Hybrid organic-inorganic perovskites have power conversion efficiencies exceeding 20% in solar cells and have been used in other energy-related applications, such as light-emitting diodes, photocatalysts,  thermoelectrics, phototransistors,  and magneto-electroluminescent devices. We can fabricate the devices using solution-based, low-temperature processing methods and thus are attractive from the point of view of low-cost, large-scale fabrication. These exciting possibilities drive widespread interest in this field.

The Problem: Hybrid organic-inorganic perovskites-based active layers that are currently used for solar cells are unstable to sunlight.  Without increased stability, perovskite-based devices will remain as laboratory curiosity instead of a technological breakthrough. 

Our approach: By unraveling the molecular origins of light-induced instability, we aim to provide chemistry solutions to increase perovskite’s operational stability. We study charge and mass transport in hybrid organic-inorganic perovskites and their relationship to stability.  We chemically modify the perovskites and manipulate the interfaces to improve stability without sacrificing power conversions efficiency.  We use our expertise  in supramolecular chemistry,  polymer chemistry, materials synthesis and characterization,  electrochemical impedance spectroscopy (EIS) and direct current (DC) conductivity techniques to study mixed ionic-electronic conductivity in Perovskites. 

Key Publications

  1. Bag, M.; Renna, L. A.; Adhikari, R. Y.; Karak, S.; Liu, F.; Lahti, P. M.; Russell, T. P.; Tuominen, M. T.; Venkataraman, D. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J. Am. Chem. Soc. 2015, 137, 13130–13137. https://doi.org/10.1021/jacs.5b08535.
  2. Bag, M.; Jiang, Z.; Renna, L. A.; Jeong, S. P.; Rotello, V. M.; Venkataraman, D. Rapid Combinatorial Screening of Inkjet-Printed Alkyl-Ammonium Cations in Perovskite Solar Cells. Mater. Lett. 2016, 164, 472–475. https://doi.org/10.1016/j.matlet.2015.11.058.
  3. Bag, M.; Renna, L. A.; Jeong, S. P.; Han, X.; Cutting, C. L.; Maroudas, D.; Venkataraman, D. Evidence for Reduced Charge Recombination in Carbon Nanotube/Perovskite-Based Active Layers. Chem. Phys. Lett. 2016, 662, 35–41. https://doi.org/10.1016/j.cplett.2016.09.004.
  4. Liu, Y.; Bag, M.; Renna, L. A.; Page, Z. A.; Kim, P.; Emrick, T.; Venkataraman, D.; Russell, T. P. Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Adv. Energy Mater. 2016, 6, n/a. https://doi.org/10.1002/aenm.201501606.
  5. Liu, Y.; Renna, L. A.; Bag, M.; Page, Z. A.; Kim, P.; Choi, J.; Emrick, T.; Venkataraman, D.; Russell, T. P. High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. ACS Appl. Mater. Interfaces 2016, 8, 7070–7076. https://doi.org/10.1021/acsami.5b12740.
  6. Liu, Y.; Renna, L. A.; Page, Z. A.; Thompson, H. B.; Kim, P. Y.; Barnes, M. D.; Emrick, T.; Venkataraman, D.; Russell, T. P. A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Adv. Energy Mater. 2016, 6, n/a. https://doi.org/10.1002/aenm.201600664.
  7. Liu, Y.; Renna, L. A.; Thompson, H. B.; Page, Z. A.; Emrick, T.; Barnes, M. D.; Bag, M.; Venkataraman, D.; Russell, T. P. Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. Adv. Energy Mater. 2017, 7, n/a. https://doi.org/10.1002/aenm.201701235.
  8. Renna, L. A.; Liu, Y.; Russell, T. P.; Bag, M.; Venkataraman, D. Evidence of Tunable Macroscopic Polarization in Perovskite Films Using Photo-Kelvin Probe Force Microscopy. Mater. Lett. 2018, 217, 308–311. https://doi.org/10.1016/j.matlet.2018.01.106.
  9. Smith, E. C.; Ellis, C. L. C.; Javaid, H.; Renna, L. A.; Liu, Y.; Russell, T. P.; Bag, M.; Venkataraman, D. Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. J. Phys. Chem. C 2018, 122, 13986–13994. https://doi.org/10.1021/acs.jpcc.8b01121.
  10. Smith, E. C.; Ellis, C. L. C.; Javaid, H.; Arden, B. G.; Venkataraman, D. The Use of Ion-Selective Membranes to Study Cation Transport in Hybrid Organic-Inorganic Perovskites. Phys. Chem. Chem. Phys. 2019, 21, 20720–20726. https://doi.org/10.1039/c9cp03891d.
  11. Ellis, C. L. C.; Javaid, H.; Smith, E. C.; Venkataraman, D. Hybrid Perovskites with Larger Organic Cations Reveal Autocatalytic Degradation Kinetics and Increased Stability under Light. Inorg. Chem. 2020, 59, 12176–12186. https://doi.org/10.1021/acs.inorgchem.0c01133.
  12. Javaid, H.; Duzhko, V. V.; Venkataraman, D. Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 72–80. https://doi.org/10.1021/acsaem.0c01806.
  13. Javaid, H.; Heller, N.; Duzhko, V. V.; Hight-Huf, N.; Barnes, M. D.; Venkataraman, D. Copper Bromide Hole Transport Layer for Stable and Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 8075–8083. https://doi.org/10.1021/acsaem.2c00548.
  14. Kumar, R.; Kumar, A.; Shukla, P. S.; Varma, G. D.; Venkataraman, D.; Bag, M. Photorechargeable Hybrid Halide Perovskite Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 35592–35599. https://doi.org/10.1021/acsami.2c07440.
  15. Smith, E.; Venkataraman, D. Deleterious Effects of Halides and Solvents Used in Electronic Device Fabrication on the Integrity of Copper Iodide Thin-Films. ChemPlusChem 2022, 87, e202200101. https://doi.org/10.1002/cplu.202200101.
  16. Zhang, Z.; Gilchrist, R. J.; Tsuji, M.; Grimm, R. L.; Mani, T.; Venkataraman, D. Synergistic Impact of Passivation and Efficient Hole Extraction on Phase Segregation in Mixed Halide Perovskites. Adv. Opt. Mater. 2024, 12, 2401753. https://doi.org/10.1002/adom.202401753.
  17. Zhang, Z.; Tsuji, M.; Hu, X.; Mani, T.; Venkataraman, D. Impact of Photogenerated Charge Carriers on the Stability of the 2D/3D Perovskite Interface. Chem. Mater. 2024, 36, 12044–12054. https://doi.org/10.1021/acs.chemmater.4c03015.